mirror of https://github.com/t1meshift/os_labs.git
Add 12th lab
parent
1243883cec
commit
bd10ce553a
|
@ -22,3 +22,4 @@ define_lab(lab7)
|
|||
define_lab(lab8)
|
||||
define_lab(lab9)
|
||||
define_lab(lab10)
|
||||
define_lab(lab12)
|
|
@ -8,9 +8,11 @@
|
|||
- [Лабораторная работа 5](lab5/README.md)
|
||||
- [Лабораторная работа 6](lab6/README.md)
|
||||
- [Лабораторная работа 7](lab7/README.md)
|
||||
- [Лабораторная работа 8](lab8/README.md)
|
||||
- [Лабораторная работа 9](lab9/README.md)
|
||||
- [Лабораторная работа 10](lab10/README.md)
|
||||
- [Лабораторная работа 11](lab11/README.md)
|
||||
- [Лабораторная работа 12](lab12/README.md)
|
||||
|
||||
## Запуск
|
||||
|
||||
|
|
|
@ -0,0 +1,10 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
set -euo pipefail
|
||||
IFS=$'\n\t'
|
||||
|
||||
pushd "$1" > /dev/null
|
||||
|
||||
./lab12_cache.c_run > ./data && lscpu && cat /proc/cpuinfo && python2 ./graph_data.py
|
||||
|
||||
popd > /dev/null
|
|
@ -0,0 +1,36 @@
|
|||
cmake_minimum_required(VERSION 3.16)
|
||||
set(CMAKE_C_STANDARD 11)
|
||||
|
||||
# Lab name
|
||||
set(LAB_NAME "lab12")
|
||||
|
||||
# Lab tasks
|
||||
list(APPEND SOURCE_FILES
|
||||
cache.c
|
||||
)
|
||||
list(APPEND NON_COMPILABLE_SRC
|
||||
.execme
|
||||
graph_data.py
|
||||
thinkplot.py
|
||||
)
|
||||
|
||||
### Here goes the template
|
||||
|
||||
project("${LAB_NAME}" C)
|
||||
|
||||
add_custom_target("${LAB_NAME}")
|
||||
|
||||
foreach (file IN LISTS SOURCE_FILES)
|
||||
add_executable("${LAB_NAME}_${file}_run" "${file}")
|
||||
add_dependencies("${LAB_NAME}" "${LAB_NAME}_${file}_run")
|
||||
endforeach ()
|
||||
|
||||
foreach (file IN LISTS NON_COMPILABLE_SRC)
|
||||
add_custom_command(
|
||||
TARGET "${LAB_NAME}" POST_BUILD
|
||||
DEPENDS "${file}"
|
||||
COMMAND ${CMAKE_COMMAND} -E copy
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/${file}"
|
||||
"${CMAKE_CURRENT_BINARY_DIR}/${file}"
|
||||
)
|
||||
endforeach ()
|
|
@ -0,0 +1,53 @@
|
|||
# Лабораторная работа №12
|
||||
|
||||
> Проанализируйте cache.c и с ее использованием исследуйте параметры кэша на вашем компьютере. Для этого
|
||||
> 1. постройте графики времени доступа как функции длины массива, шага выборки и размера буфера.
|
||||
> 2. на их основе сформулируйте обоснованные гипотезы о размере кэша, размере блока, наличию кэша более высокого уровня.
|
||||
> 3. сравните свои оценки с реальными значениями, полученными через вызов системных функций или из технического описания вашего компьютера.
|
||||
|
||||
График:
|
||||
|
||||
![](g1.png)
|
||||
|
||||
Как видно из графика, стремительный рост access time происходит на 2^22 B, что примерно равно 4 мегабайтам.
|
||||
Из этого можно предположить, что размер кэша -- 4Мб. На размере блока выше 64 байт происходит увеличение access time,
|
||||
что может быть связано с тем, что физический размер блока -- 64 байта. Также наблюдаются ускорения при размере 2^20 и
|
||||
2^21, что может говорить о существовании некоторых кэшей размером в 1 и 2 Мб.
|
||||
|
||||
Вывод `cat /proc/cpuinfo`:
|
||||
```text
|
||||
...
|
||||
cache size : 3072 KB
|
||||
bugs : cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf mds swapgs itlb_multihit srbds
|
||||
bogomips : 3792.26
|
||||
clflush size : 64
|
||||
cache_alignment : 64
|
||||
address sizes : 39 bits physical, 48 bits virtual
|
||||
...
|
||||
```
|
||||
|
||||
Вывод `lscpu`:
|
||||
```text
|
||||
...
|
||||
L1d cache: 64 KiB
|
||||
L1i cache: 64 KiB
|
||||
L2 cache: 512 KiB
|
||||
L3 cache: 3 MiB
|
||||
Vulnerability Itlb multihit: KVM: Mitigation: Split huge pages
|
||||
Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable
|
||||
Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable
|
||||
Vulnerability Meltdown: Mitigation; PTI
|
||||
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
|
||||
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
|
||||
Vulnerability Spectre v2: Mitigation; Full generic retpoline, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling
|
||||
Vulnerability Srbds: Mitigation; Microcode
|
||||
Vulnerability Tsx async abort: Not affected
|
||||
...
|
||||
```
|
||||
|
||||
Исходя из этих данных, можно предположить, что в связи с патчами для устранения уязвимостей процессора
|
||||
(Spectre, Meltdown, L1TF и прочие) график может не вполне корректно отражать реальное положение дел.
|
||||
|
||||
Но выводы оказались достаточно приближены к действительности: мы видим два L1-кэша размера 64 Кб (не видно
|
||||
на графике, т.к. 2^16 Б меньше левой границы графика), L2-кэш размера 512 Кб (2^19 Б) и L3-кэш размера 3 Мб
|
||||
(~2^(21.6) Б).
|
|
@ -0,0 +1,72 @@
|
|||
/******************************************************************
|
||||
* CACHE project *
|
||||
* *
|
||||
* Using this program, on as many different kinds of computers as *
|
||||
* possible, investigate these cache parameters: *
|
||||
* -- total cache size *
|
||||
* -- cache width *
|
||||
* -- cache replacement policy *
|
||||
******************************************************************/
|
||||
|
||||
/* I got this program from Brian Harvey, who teaches CS61C at
|
||||
Berkeley. He didn't put a copyright on it, but he should
|
||||
at least get credit for it. Thanks, Brian! */
|
||||
|
||||
#include <stdio.h>
|
||||
#include <unistd.h>
|
||||
#include <sys/times.h>
|
||||
#include <sys/types.h>
|
||||
#include <time.h>
|
||||
|
||||
#define CACHE_MIN (32*1024) /* smallest cache */
|
||||
#define CACHE_MAX (32*1024*1024) /* largest cache */
|
||||
#define SAMPLE 10 /* to get a larger time sample */
|
||||
|
||||
int x[CACHE_MAX]; /* array going to stride through */
|
||||
long clk_tck;
|
||||
|
||||
double get_seconds() { /* routine to read time */
|
||||
struct tms rusage;
|
||||
times(&rusage); /* UNIX utility: time in clock ticks */
|
||||
return (double) (rusage.tms_utime)/clk_tck;
|
||||
}
|
||||
|
||||
int main() {
|
||||
int register i, index, stride, limit, temp;
|
||||
int steps, tsteps, csize;
|
||||
double sec0, sec; /* timing variables */
|
||||
|
||||
clk_tck = sysconf(_SC_CLK_TCK);
|
||||
|
||||
for (csize=CACHE_MIN; csize <= CACHE_MAX; csize=csize*2)
|
||||
for (stride=1; stride <= csize/2; stride=stride*2) {
|
||||
sec = 0; /* initialize timer */
|
||||
limit = csize-stride+1; /* cache size this loop */
|
||||
|
||||
steps = 0;
|
||||
do { /* repeat until collect 1 second */
|
||||
sec0 = get_seconds(); /* start timer */
|
||||
for (i=SAMPLE*stride;i!=0;i=i-1) /* larger sample */
|
||||
for (index=0; index < limit; index=index+stride)
|
||||
x[index] = x[index] + 1; /* cache access */
|
||||
steps = steps + 1; /* count while loop iterations */
|
||||
sec = sec + (get_seconds() - sec0);/* end timer */
|
||||
} while (sec < 1.0); /* until collect 1 second */
|
||||
|
||||
/* Repeat empty loop to loop subtract overhead */
|
||||
tsteps = 0; /* used to match no. while iterations */
|
||||
do { /* repeat until same no. iterations as above */
|
||||
sec0 = get_seconds(); /* start timer */
|
||||
for (i=SAMPLE*stride;i!=0;i=i-1) /* larger sample */
|
||||
for (index=0; index < limit; index=index+stride)
|
||||
temp = temp + index; /* dummy code */
|
||||
tsteps = tsteps + 1; /* count while iterations */
|
||||
sec = sec - (get_seconds() - sec0);/* - overhead */
|
||||
} while (tsteps<steps); /* until = no. iterations */
|
||||
|
||||
printf("Size: %7ld Stride: %7ld read+write: %4.4lf ns\n",
|
||||
csize*sizeof(int), stride*sizeof(int),
|
||||
(double) sec*1e9/(steps*SAMPLE*stride*((limit-1)/stride+1)));
|
||||
}; /* end of both outer for loops */
|
||||
}
|
||||
|
Binary file not shown.
After Width: | Height: | Size: 43 KiB |
|
@ -0,0 +1,20 @@
|
|||
import thinkplot
|
||||
import matplotlib.pyplot as pyplot
|
||||
|
||||
d = {}
|
||||
for line in open('data'):
|
||||
t = line.split()
|
||||
size, stride, time = int(t[1]), int(t[3]), float(t[5])
|
||||
d.setdefault(stride, []).append((size, time))
|
||||
|
||||
|
||||
thinkplot.PrePlot(num=7)
|
||||
for stride in sorted(d.keys()):
|
||||
if stride >= 512: continue
|
||||
|
||||
xs, ys = zip(*d[stride])
|
||||
thinkplot.plot(xs, ys, label=str(stride))
|
||||
print stride, len(d[stride])
|
||||
|
||||
pyplot.xscale('log', basex=2)
|
||||
thinkplot.show(xlabel='size (B)', ylabel='access time (ns)')
|
|
@ -0,0 +1,504 @@
|
|||
"""This file contains code for use with "Think Stats",
|
||||
by Allen B. Downey, available from greenteapress.com
|
||||
|
||||
Copyright 2010 Allen B. Downey
|
||||
License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html
|
||||
"""
|
||||
|
||||
import math
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as pyplot
|
||||
import numpy as np
|
||||
|
||||
# customize some matplotlib attributes
|
||||
#matplotlib.rc('figure', figsize=(4, 3))
|
||||
|
||||
#matplotlib.rc('font', size=14.0)
|
||||
#matplotlib.rc('axes', labelsize=22.0, titlesize=22.0)
|
||||
#matplotlib.rc('legend', fontsize=20.0)
|
||||
|
||||
#matplotlib.rc('xtick.major', size=6.0)
|
||||
#matplotlib.rc('xtick.minor', size=3.0)
|
||||
|
||||
#matplotlib.rc('ytick.major', size=6.0)
|
||||
#matplotlib.rc('ytick.minor', size=3.0)
|
||||
|
||||
|
||||
class Brewer(object):
|
||||
"""Encapsulates a nice sequence of colors.
|
||||
|
||||
Shades of blue that look good in color and can be distinguished
|
||||
in grayscale (up to a point).
|
||||
|
||||
Borrowed from http://colorbrewer2.org/
|
||||
"""
|
||||
color_iter = None
|
||||
|
||||
colors = ['#081D58',
|
||||
'#253494',
|
||||
'#225EA8',
|
||||
'#1D91C0',
|
||||
'#41B6C4',
|
||||
'#7FCDBB',
|
||||
'#C7E9B4',
|
||||
'#EDF8B1',
|
||||
'#FFFFD9']
|
||||
|
||||
# lists that indicate which colors to use depending on how many are used
|
||||
which_colors = [[],
|
||||
[1],
|
||||
[1, 3],
|
||||
[0, 2, 4],
|
||||
[0, 2, 4, 6],
|
||||
[0, 2, 3, 5, 6],
|
||||
[0, 2, 3, 4, 5, 6],
|
||||
[0, 1, 2, 3, 4, 5, 6],
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def Colors(cls):
|
||||
"""Returns the list of colors.
|
||||
"""
|
||||
return cls.colors
|
||||
|
||||
@classmethod
|
||||
def ColorGenerator(cls, n):
|
||||
"""Returns an iterator of color strings.
|
||||
|
||||
n: how many colors will be used
|
||||
"""
|
||||
for i in cls.which_colors[n]:
|
||||
yield cls.colors[i]
|
||||
raise StopIteration('Ran out of colors in Brewer.ColorGenerator')
|
||||
|
||||
@classmethod
|
||||
def InitializeIter(cls, num):
|
||||
"""Initializes the color iterator with the given number of colors."""
|
||||
cls.color_iter = cls.ColorGenerator(num)
|
||||
|
||||
@classmethod
|
||||
def ClearIter(cls):
|
||||
"""Sets the color iterator to None."""
|
||||
cls.color_iter = None
|
||||
|
||||
@classmethod
|
||||
def GetIter(cls):
|
||||
"""Gets the color iterator."""
|
||||
return cls.color_iter
|
||||
|
||||
|
||||
def PrePlot(num=None, rows=1, cols=1):
|
||||
"""Takes hints about what's coming.
|
||||
|
||||
num: number of lines that will be plotted
|
||||
"""
|
||||
if num:
|
||||
Brewer.InitializeIter(num)
|
||||
|
||||
# TODO: get sharey and sharex working. probably means switching
|
||||
# to subplots instead of subplot.
|
||||
# also, get rid of the gray background.
|
||||
|
||||
if rows > 1 or cols > 1:
|
||||
pyplot.subplots(rows, cols, sharey=True)
|
||||
global SUBPLOT_ROWS, SUBPLOT_COLS
|
||||
SUBPLOT_ROWS = rows
|
||||
SUBPLOT_COLS = cols
|
||||
|
||||
|
||||
def SubPlot(rows, cols, plot_number):
|
||||
"""Configures the number of subplots and changes the current plot.
|
||||
|
||||
rows: int
|
||||
cols: int
|
||||
plot_number: int
|
||||
"""
|
||||
pyplot.subplot(rows, cols, plot_number)
|
||||
|
||||
|
||||
class InfiniteList(list):
|
||||
"""A list that returns the same value for all indices."""
|
||||
def __init__(self, val):
|
||||
"""Initializes the list.
|
||||
|
||||
val: value to be stored
|
||||
"""
|
||||
list.__init__(self)
|
||||
self.val = val
|
||||
|
||||
def __getitem__(self, index):
|
||||
"""Gets the item with the given index.
|
||||
|
||||
index: int
|
||||
|
||||
returns: the stored value
|
||||
"""
|
||||
return self.val
|
||||
|
||||
|
||||
def Underride(d, **options):
|
||||
"""Add key-value pairs to d only if key is not in d.
|
||||
|
||||
If d is None, create a new dictionary.
|
||||
|
||||
d: dictionary
|
||||
options: keyword args to add to d
|
||||
"""
|
||||
if d is None:
|
||||
d = {}
|
||||
|
||||
for key, val in options.iteritems():
|
||||
d.setdefault(key, val)
|
||||
|
||||
return d
|
||||
|
||||
|
||||
def Clf():
|
||||
"""Clears the figure and any hints that have been set."""
|
||||
Brewer.ClearIter()
|
||||
pyplot.clf()
|
||||
|
||||
|
||||
def Figure(**options):
|
||||
"""Sets options for the current figure."""
|
||||
Underride(options, figsize=(6, 8))
|
||||
pyplot.figure(**options)
|
||||
|
||||
|
||||
def Plot(xs, ys, style='', **options):
|
||||
"""Plots a line.
|
||||
|
||||
Args:
|
||||
xs: sequence of x values
|
||||
ys: sequence of y values
|
||||
style: style string passed along to pyplot.plot
|
||||
options: keyword args passed to pyplot.plot
|
||||
"""
|
||||
color_iter = Brewer.GetIter()
|
||||
|
||||
if color_iter:
|
||||
try:
|
||||
options = Underride(options, color=color_iter.next())
|
||||
except StopIteration:
|
||||
print 'Warning: Brewer ran out of colors.'
|
||||
Brewer.ClearIter()
|
||||
|
||||
options = Underride(options, linewidth=3, alpha=0.8)
|
||||
pyplot.plot(xs, ys, style, **options)
|
||||
|
||||
|
||||
def Scatter(xs, ys, **options):
|
||||
"""Makes a scatter plot.
|
||||
|
||||
xs: x values
|
||||
ys: y values
|
||||
options: options passed to pyplot.scatter
|
||||
"""
|
||||
options = Underride(options, color='blue', alpha=0.2,
|
||||
s=30, edgecolors='none')
|
||||
pyplot.scatter(xs, ys, **options)
|
||||
|
||||
|
||||
def Pmf(pmf, **options):
|
||||
"""Plots a Pmf or Hist as a line.
|
||||
|
||||
Args:
|
||||
pmf: Hist or Pmf object
|
||||
options: keyword args passed to pyplot.plot
|
||||
"""
|
||||
xs, ps = pmf.Render()
|
||||
if pmf.name:
|
||||
options = Underride(options, label=pmf.name)
|
||||
Plot(xs, ps, **options)
|
||||
|
||||
|
||||
def Pmfs(pmfs, **options):
|
||||
"""Plots a sequence of PMFs.
|
||||
|
||||
Options are passed along for all PMFs. If you want different
|
||||
options for each pmf, make multiple calls to Pmf.
|
||||
|
||||
Args:
|
||||
pmfs: sequence of PMF objects
|
||||
options: keyword args passed to pyplot.plot
|
||||
"""
|
||||
for pmf in pmfs:
|
||||
Pmf(pmf, **options)
|
||||
|
||||
|
||||
def Hist(hist, **options):
|
||||
"""Plots a Pmf or Hist with a bar plot.
|
||||
|
||||
The default width of the bars is based on the minimum difference
|
||||
between values in the Hist. If that's too small, you can override
|
||||
it by providing a width keyword argument, in the same units
|
||||
as the values.
|
||||
|
||||
Args:
|
||||
hist: Hist or Pmf object
|
||||
options: keyword args passed to pyplot.bar
|
||||
"""
|
||||
# find the minimum distance between adjacent values
|
||||
xs, fs = hist.Render()
|
||||
width = min(Diff(xs))
|
||||
|
||||
if hist.name:
|
||||
options = Underride(options, label=hist.name)
|
||||
|
||||
options = Underride(options,
|
||||
align='center',
|
||||
linewidth=0,
|
||||
width=width)
|
||||
|
||||
pyplot.bar(xs, fs, **options)
|
||||
|
||||
|
||||
def Hists(hists, **options):
|
||||
"""Plots two histograms as interleaved bar plots.
|
||||
|
||||
Options are passed along for all PMFs. If you want different
|
||||
options for each pmf, make multiple calls to Pmf.
|
||||
|
||||
Args:
|
||||
hists: list of two Hist or Pmf objects
|
||||
options: keyword args passed to pyplot.plot
|
||||
"""
|
||||
for hist in hists:
|
||||
Hist(hist, **options)
|
||||
|
||||
|
||||
def Diff(t):
|
||||
"""Compute the differences between adjacent elements in a sequence.
|
||||
|
||||
Args:
|
||||
t: sequence of number
|
||||
|
||||
Returns:
|
||||
sequence of differences (length one less than t)
|
||||
"""
|
||||
diffs = [t[i+1] - t[i] for i in range(len(t)-1)]
|
||||
return diffs
|
||||
|
||||
|
||||
def Cdf(cdf, complement=False, transform=None, **options):
|
||||
"""Plots a CDF as a line.
|
||||
|
||||
Args:
|
||||
cdf: Cdf object
|
||||
complement: boolean, whether to plot the complementary CDF
|
||||
transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel'
|
||||
options: keyword args passed to pyplot.plot
|
||||
|
||||
Returns:
|
||||
dictionary with the scale options that should be passed to
|
||||
Config, Show or Save.
|
||||
"""
|
||||
xs, ps = cdf.Render()
|
||||
scale = dict(xscale='linear', yscale='linear')
|
||||
|
||||
for s in ['xscale', 'yscale']:
|
||||
if s in options:
|
||||
scale[s] = options.pop(s)
|
||||
|
||||
if transform == 'exponential':
|
||||
complement = True
|
||||
scale['yscale'] = 'log'
|
||||
|
||||
if transform == 'pareto':
|
||||
complement = True
|
||||
scale['yscale'] = 'log'
|
||||
scale['xscale'] = 'log'
|
||||
|
||||
if complement:
|
||||
ps = [1.0-p for p in ps]
|
||||
|
||||
if transform == 'weibull':
|
||||
xs.pop()
|
||||
ps.pop()
|
||||
ps = [-math.log(1.0-p) for p in ps]
|
||||
scale['xscale'] = 'log'
|
||||
scale['yscale'] = 'log'
|
||||
|
||||
if transform == 'gumbel':
|
||||
xs.pop(0)
|
||||
ps.pop(0)
|
||||
ps = [-math.log(p) for p in ps]
|
||||
scale['yscale'] = 'log'
|
||||
|
||||
if cdf.name:
|
||||
options = Underride(options, label=cdf.name)
|
||||
|
||||
Plot(xs, ps, **options)
|
||||
return scale
|
||||
|
||||
|
||||
def Cdfs(cdfs, complement=False, transform=None, **options):
|
||||
"""Plots a sequence of CDFs.
|
||||
|
||||
cdfs: sequence of CDF objects
|
||||
complement: boolean, whether to plot the complementary CDF
|
||||
transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel'
|
||||
options: keyword args passed to pyplot.plot
|
||||
"""
|
||||
for cdf in cdfs:
|
||||
Cdf(cdf, complement, transform, **options)
|
||||
|
||||
|
||||
def Contour(obj, pcolor=False, contour=True, imshow=False, **options):
|
||||
"""Makes a contour plot.
|
||||
|
||||
d: map from (x, y) to z, or object that provides GetDict
|
||||
pcolor: boolean, whether to make a pseudocolor plot
|
||||
contour: boolean, whether to make a contour plot
|
||||
imshow: boolean, whether to use pyplot.imshow
|
||||
options: keyword args passed to pyplot.pcolor and/or pyplot.contour
|
||||
"""
|
||||
try:
|
||||
d = obj.GetDict()
|
||||
except AttributeError:
|
||||
d = obj
|
||||
|
||||
Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)
|
||||
|
||||
xs, ys = zip(*d.iterkeys())
|
||||
xs = sorted(set(xs))
|
||||
ys = sorted(set(ys))
|
||||
|
||||
X, Y = np.meshgrid(xs, ys)
|
||||
func = lambda x, y: d.get((x, y), 0)
|
||||
func = np.vectorize(func)
|
||||
Z = func(X, Y)
|
||||
|
||||
x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
|
||||
axes = pyplot.gca()
|
||||
axes.xaxis.set_major_formatter(x_formatter)
|
||||
|
||||
if pcolor:
|
||||
pyplot.pcolormesh(X, Y, Z, **options)
|
||||
if contour:
|
||||
cs = pyplot.contour(X, Y, Z, **options)
|
||||
pyplot.clabel(cs, inline=1, fontsize=10)
|
||||
if imshow:
|
||||
extent = xs[0], xs[-1], ys[0], ys[-1]
|
||||
pyplot.imshow(Z, extent=extent, **options)
|
||||
|
||||
|
||||
def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options):
|
||||
"""Makes a pseudocolor plot.
|
||||
|
||||
xs:
|
||||
ys:
|
||||
zs:
|
||||
pcolor: boolean, whether to make a pseudocolor plot
|
||||
contour: boolean, whether to make a contour plot
|
||||
options: keyword args passed to pyplot.pcolor and/or pyplot.contour
|
||||
"""
|
||||
Underride(options, linewidth=3, cmap=matplotlib.cm.Blues)
|
||||
|
||||
X, Y = np.meshgrid(xs, ys)
|
||||
Z = zs
|
||||
|
||||
x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
|
||||
axes = pyplot.gca()
|
||||
axes.xaxis.set_major_formatter(x_formatter)
|
||||
|
||||
if pcolor:
|
||||
pyplot.pcolormesh(X, Y, Z, **options)
|
||||
|
||||
if contour:
|
||||
cs = pyplot.contour(X, Y, Z, **options)
|
||||
pyplot.clabel(cs, inline=1, fontsize=10)
|
||||
|
||||
|
||||
def Config(**options):
|
||||
"""Configures the plot.
|
||||
|
||||
Pulls options out of the option dictionary and passes them to
|
||||
the corresponding pyplot functions.
|
||||
"""
|
||||
names = ['title', 'xlabel', 'ylabel', 'xscale', 'yscale',
|
||||
'xticks', 'yticks', 'axis']
|
||||
|
||||
for name in names:
|
||||
if name in options:
|
||||
getattr(pyplot, name)(options[name])
|
||||
|
||||
loc = options.get('loc', 0)
|
||||
legend = options.get('legend', True)
|
||||
if legend:
|
||||
pyplot.legend(loc=loc)
|
||||
|
||||
|
||||
def Show(**options):
|
||||
"""Shows the plot.
|
||||
|
||||
For options, see Config.
|
||||
|
||||
options: keyword args used to invoke various pyplot functions
|
||||
"""
|
||||
# TODO: figure out how to show more than one plot
|
||||
Config(**options)
|
||||
pyplot.show()
|
||||
|
||||
|
||||
def Save(root=None, formats=None, **options):
|
||||
"""Saves the plot in the given formats.
|
||||
|
||||
For options, see Config.
|
||||
|
||||
Args:
|
||||
root: string filename root
|
||||
formats: list of string formats
|
||||
options: keyword args used to invoke various pyplot functions
|
||||
"""
|
||||
Config(**options)
|
||||
|
||||
if formats is None:
|
||||
formats = ['pdf', 'eps']
|
||||
|
||||
if root:
|
||||
for fmt in formats:
|
||||
SaveFormat(root, fmt)
|
||||
Clf()
|
||||
|
||||
|
||||
def SaveFormat(root, fmt='eps'):
|
||||
"""Writes the current figure to a file in the given format.
|
||||
|
||||
Args:
|
||||
root: string filename root
|
||||
fmt: string format
|
||||
"""
|
||||
filename = '%s.%s' % (root, fmt)
|
||||
print 'Writing', filename
|
||||
pyplot.savefig(filename, format=fmt, dpi=300)
|
||||
|
||||
|
||||
# provide aliases for calling functons with lower-case names
|
||||
preplot = PrePlot
|
||||
subplot = SubPlot
|
||||
clf = Clf
|
||||
figure = Figure
|
||||
plot = Plot
|
||||
scatter = Scatter
|
||||
pmf = Pmf
|
||||
pmfs = Pmfs
|
||||
hist = Hist
|
||||
hists = Hists
|
||||
diff = Diff
|
||||
cdf = Cdf
|
||||
cdfs = Cdfs
|
||||
contour = Contour
|
||||
pcolor = Pcolor
|
||||
config = Config
|
||||
show = Show
|
||||
save = Save
|
||||
|
||||
|
||||
def main():
|
||||
color_iter = Brewer.ColorGenerator(7)
|
||||
for color in color_iter:
|
||||
print color
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue